

UiO Department of Mathematics University of Oslo

Strongly 1-Bounded Quantum Group von Neumann Algebras

Quantum Groups Seminar

Floris Elzinga

23rd November 2021

Introduction

Contents:

- Free orthogonal quantum groups and quantum automorphism groups
- \blacksquare II₁-factors and free probability
- Strong 1-boundedness (S1B)
- $L^{\infty}(O_N^+)$ is S1B
- Subfactors
- New result: some quantum automorphism groups are S1B
- \blacksquare Open problems and obstacles

The last part is based on ongoing work with Michael Brannan, Sam Harris, and Makoto Yamashita.

Free Orthogonal Quantum Groups

Definition (van Daele-Wang)

Let $N \geq 2$ and $Q \in GL_N(\mathbb{C})$ such that $Q\overline{Q} \in \mathbb{C}I_N$. The free orthogonal quantum group $\mathbb{F}O(Q)$ is the compact matrix quantum group given by the C*-algebra

$$C_u(O_F^+) = \left\langle u_{ij} \middle| 1 \le i, j \le N, \ u \text{ unitary, } Q\overline{u}Q^{-1} = u \right\rangle.$$

- This is of Kac type if and only if $Q = I_N$ or $Q = J_{2M}$ (up to isomorphism), with J_{2M} standard symplectic.
- Denote $O_{I_N}^+ = O_N^+$ and $O_{J_{2M}}^+ = O_{2M}^{J,+}$; the latter is a graded twist of the former.
- If one demands that \overline{u} is unitary but not equal to u, one obtains U_N^+ .
- We will focus on the function algebras $L^{\infty}(O_N^+)$, $L^{\infty}(O_{2M}^{J,+})$, and $L^{\infty}(U_N^+)$.

Quantum Automorphism Groups

- Let B be a finite dimensional C*-algebra and equip it with its $Markov\ trace$: this is the restriction of the unique trace on End(B), where B is included via the left regular representation.
- Let $m: B \otimes B \to B$ be the multiplication map and $\nu: \mathbb{C} \to B$ the unit map.

Definition (Wang, Banica)

The quantum automorphism group of B is the compact matrix quantum group given by the C*-algebra

$$C_u(\operatorname{Aut}^+(B)) = \langle u_{ij} | 1 \le i, j \le \dim(B), u \text{ unitary, } \nu \in \operatorname{Mor}(\operatorname{triv}, u), \\ m \in \operatorname{Mor}(u \boxtimes u, u) \rangle.$$

- In this setting all $Aut^+(B)$ are of Kac type.
- Important special cases: $\operatorname{Aut}^+(M_N(\mathbb{C}))$ and $\operatorname{Aut}^+(\mathbb{C}^N) = S_N^+$.

II₁-factors

- A II_1 -factor is an infinite dimensional von Neumann algebra \mathcal{M} admitting a unique faithful normal tracial state τ .
- Examples:
- The hyperfinite II_1 -factor $\mathcal{R} = M_2(\mathbb{C})^{\otimes \infty}$,
- more generally the group von Neumann algebra of a discrete ICC group, such as the free groups \mathbb{F}_m (\mathcal{R} arises for any amenable such group),
- certain compact quantum group function algebras such as
 - $L^{\infty}(O_N^+)$ when $N \geq 3$ (Vaes-Vergnioux),
 - $L^{\infty}(U_N^+)$ when $N \geq 2$ (Vaes),
 - $L^{\infty}(O_{2M}^{J,+})$ when $M \geq 2$,
 - \blacksquare and $L^{\infty}(\operatorname{Aut}^+(B))$ when $\dim(B) \geq 8$ (Brannan).

von Neumann Algebraic Properties

 \mathcal{LF}_m and the Kac type free orthogonal quantum group von Neumann algebras $L^{\infty}(O_N^+)$ and $L^{\infty}(O_{2M}^{J,+})$ share many von Neumann algebraic properties (and many group-like approximation properties).

Examples:

- Haagerup property and CCAP (Brannan, De Commer-Freslon-Yamashita)
- strongly solid and in particular possess no Cartan subalgebra (Caspers, Fima-Vergnioux, Isono),
- full and hence prime (Vaes-Vergnioux),
- $\{L^{\infty}(O_N^+)\}$ has FGF-like asymptotics in a strong sense (Banica, Brannan).

The $L^{\infty}(\operatorname{Aut}^+(B))$ also satisfy many of these properties. Can we distinguish them?

Free Probability

- Let (\mathcal{M}, τ) be a II₁-factor.
- Let $X, Y \in \mathcal{M}$ be self-adjoint, then they are free if for all 2k-tuples P_1, \ldots, P_{2k} of polynomials we have that $\tau(P_1(X)\cdots P_{2k}(Y)) = 0$ if $\tau(P_1(X)) = \ldots = \tau(P_{2k}(Y)) = 0$.
- This extends to *n*-tuples X_1, \ldots, X_n of self-adjoint elements.
- A self-adjoint $S \in \mathcal{M}$ is a semicircular element if its spectral measure wrt τ , is supported on [-2, 2] and is given by the formula

$$\mathrm{d}\mu_S(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \; \mathrm{d}\lambda(t).$$

■ $\mathcal{L}\mathbb{F}_m$ can be characterised as the unique von Neumann algebra generated by m free semicircular elements.

Free Probability II

- Let $X = (X_1, ..., X_n)$ and $Y = (Y_1, ..., Y_m)$ be self-adjoint tuples in \mathcal{M} .
- The relative microstates free entropy $\chi(X:Y)$ is defined as a limit of the logarithmic volume of relative microstates.
- It gives rise to the (modified) microstates free entropy dimension

$$\delta_0(X) = n + \limsup_{\varepsilon \downarrow 0} \frac{\chi(X + \varepsilon S : S)}{|\log \varepsilon|} \le n.$$

- \blacksquare Here S is an n-tuple of free semicircular elements, free from X.
- It turns out that $\delta_0(S_1,\ldots,S_m)=m$ (recall these generate \mathcal{LF}_m).
- Unknown if δ_0 is an invariant. If it is, that will settle the free group factor isomorphism problem.

Strong 1-Boundedness

Definition (Jung)

X is 1-bounded if for small ε we have the estimate

$$\chi(X + \varepsilon S : S) \le (1 - n)|\log \varepsilon| + \text{const.}$$

If additionally an X_j satisfies $\chi(X_j) > -\infty$, X is strongly 1-bounded. \mathcal{M} is called strongly 1-bounded if it admits such a generating tuple.

- $\mathbf{v}(X_j) > -\infty$ if it has a bounded diffuse spectral measure.
- 1-Boundedness is slightly stronger than $\delta_0(X) \leq 1$.

Theorem (Jung)

If \mathcal{M} is strongly 1-bounded, then all generating tuples Y are 1-bounded.

- Hence, such \mathcal{M} are not isomorphic to any $\mathcal{L}\mathbb{F}_m$.
- For II_1 -factors, property Γ implies being S1B.

Sufficient Condition for 1-Boundedness

Theorem (Jung, Shlyakhtenko)

Let (\mathcal{M}, τ) be a II_1 -factor and $X = (X_1, \ldots, X_n)$ self-adjoints in \mathcal{M} . Assume that there is a vector F of polynomial relations such that

$$F(X) = 0$$
 and $\det_{\text{FKL}} \left[\partial F(X)^* \partial F(X) \right] \neq 0.$

Then it holds that X is α -bounded with

$$\alpha = n - \text{rank } \partial F(X).$$

- Take F to be the defining relations of O_N^+ .
- Fact: rank $\partial F(u) = N^2 1 + \beta_0^{(2)}(O_N^+) \beta_1^{(2)}(O_N^+) = N^2 1$.
- In this case $\partial F(u)^*\partial F(u)$ is related to the quantum Cayley graph of the discrete dual of O_N^+ .
- Original setting: sofic groups Γ with $\beta_1^{(2)}(\Gamma) = 0$

$L^{\infty}(O_N^+)$ is S1B

Theorem (Brannan-Vergnioux)

 $L^{\infty}(O_N^+)$ is strongly 1-bounded.

- $\delta_0(X)$ actually only depends on the *-algebra generated by X (Voiculescu), this is also true of 1-boundedness (Jung, E.).
- The character of the fundamental representation is semicircular (Banica), thus we get the theorem.
- Originally, the argument relied on the computation of the spectral measures of the generators by Banica-Collins-Zinn-Justin.
- This strategy can also be adapted to prove that $L^{\infty}(O_{2M}^{J,+})$ are also strongly 1-bounded (E.).

More on Free Entropy Dimension and CQGs

- Let \mathbb{G} be a compact quantum group with defining representation v such that $L^{\infty}(\mathbb{G})$ is a II_1 -factor.
- Then (Connes–Shlyakhtenko) $\delta_0(v) \leq 1 \beta_0^{(2)}(\mathbb{G}) + \beta_1^{(2)}(\mathbb{G})$
- and $1 \leq \delta_0(v)$ if $L^{\infty}(\mathbb{G})$ is Connes embeddable (Jung).
- Thus $\delta_0(v) = 1$ for $\mathbb{G} = O_N^+$, $O_{2M}^{J,+}$, $\operatorname{Aut}^+(B)$ (!) and $1 \leq \delta_0(v) \leq 2$ for $\mathbb{G} = U_N^+$ (many hands).
- We already know that the first two families give S1B II₁-factors, we now show the same for $\operatorname{Aut}^+(B)$ when $\dim(B) = N^2$ with $N \geq 3$, and that U_N^+ is NOT strongly 1-bounded.
- To the best of our knowledge, this gives the first proof that $L^{\infty}(U_N^+)$ is never isomorphic to $L^{\infty}(O_M^+)$ (other than Banica's result that $L^{\infty}(U_2^+) \cong \mathcal{L}\mathbb{F}_2$).

Free Entropy Dimension and Subfactors

- Let $\mathcal{N} \subset \mathcal{M}$ be a unital inclusion of II₁-factors; it can be assigned an $index [\mathcal{M} : \mathcal{N}]$ (Jones) which we will assume is finite.
- Suppose that X, Y generates \mathcal{N}, \mathcal{M} respectively, then one expects (Schreier)

$$(\delta_0(X) - 1) = [\mathcal{M} : \mathcal{N}] (\delta_0(Y) - 1)$$

Theorem (Brannan–E.–Harris–Yamashita)

 $\mathcal N$ is strongly 1-bounded if and only if $\mathcal M$ is strongly 1-bounded.

- Hence $\operatorname{Aut}^+(M_N(\mathbb{C}))$ for $N \geq 3$ produces a S1B function algebra, as it appears as an index 2 subfactor of $L^\infty(O_N^+)$ (Banica, Brannan).
- By graded twisting, one can realize $L^{\infty}(O_{2M}^{J,+})$ as a finite index subfactor of $M_2(\mathbb{C}) \otimes L^{\infty}(O_{2M}^+)$ (Bichon–Neshveyev–Yamashita).

Quantum Automorphism Groups as Subfactors

Theorem (BEHY)

For any finite dimensional C^* -algebra B, we have a finite index inclusion of $L^{\infty}(\operatorname{Aut}^+(B))$ into a matrix amplification of $L^{\infty}(S^+_{\dim(B)})$.

Corollary

If dim(B) = N^2 with $N \ge 3$, then $L^{\infty}(\operatorname{Aut}^+(B))$ is strongly 1-bounded. In particular $L^{\infty}(S_{N^2}^+)$ is strongly 1-bounded.

- For B_1 , B_2 , the associated quantum automorphism groups are monoidally equivalent if and only if $\dim(B_1) = \dim(B_2)$.
- These embeddings come from the *linking algebra* which implements the monoidal equivalence.
- This seems to be the main obstacle to pushing our results to arbitrary $\dim(B)$.

The Free Unitary Case

Proposition (Brown–Dykema–Jung)

Assume that \mathcal{N} and \mathcal{M} are Connes embeddable strongly 1-bounded II_1 factors, and that X, Y generates \mathcal{N}, \mathcal{M} respectively. Then in $\mathcal{N} * \mathcal{M}$ it
holds that $\delta_0(X \cup Y) = 2$, and so $\mathcal{N} * \mathcal{M}$ is not strongly 1-bounded.

- One can realize $L^{\infty}(U_N^+)$ as a graded twist of $L^{\infty}(O_N^+ * O_N^+)$, and hence as a finite index subfactor of a matrix amplification. Therefore it cannot be strongly 1-bounded.
- In particular, we can forbid the canonical generators from forming a 1-bounded set.
- However, at the moment we cannot yet prove that $\delta_0(v)$ is different from 1 (we expect it to equal 2).
- While $L^{\infty}(\operatorname{Aut}^+(M_N(\mathbb{C})))$ also embeds into $L^{\infty}(U_N^+)$, this can never have finite index.

Proof Sketch of the Subfactor Result I

- From now on let $\mathcal{N} \subset \mathcal{M}$ be a unital finite index inclusion and assume that \mathcal{M} is strongly 1-bounded.
- The basic construction gives a new II₁-factor $\mathcal{M}_{ov} \supset \mathcal{M}$ such that $[\mathcal{M}_{ov} : \mathcal{M}] = [\mathcal{M} : \mathcal{N}]$.
- In fact, \mathcal{M}_{ov} is generated by \mathcal{M} and the *Jones projection* $e \in B(L^2(M))$, which commutes with N.
- Moreover, \mathcal{M}_{ov} is an amplification of \mathcal{N} , since \mathcal{M}_{ov} and \mathcal{N}^{op} are commutants on $L^2(\mathcal{M})$.
- Hayes: corners of a strongly 1-bounded II₁-factor with respect to a projection p are strongly 1-bounded if $\tau(p) \neq 0$.
- So it suffices to show that \mathcal{M}_{ov} is strongly 1-bounded.

Proof Sketch of the Subfactor Result II

Theorem (Jung)

Let $A \subset B$ be a unital inclusion of II_1 -factors with A strongly 1-bounded. Assume that we have a unitary $u \in B$ such that there is a diffuse self-adjoint element $a \in A$ such that $uau^* \in A$. Then the von Neumann algebra generated by A and u is strongly 1-bounded.

■ Consider the self-adjoint unitary 1 - 2e and let x be any diffuse self-adjoint element in \mathcal{N} , then

$$(1-2e)x(1-2e) = x - 2(ex + xe) + 4exe = x \in \mathcal{M}.$$

- Hence \mathcal{M}_{ov} is strongly 1-bounded.
- For the other direction, one uses instead the tunnel construction, which gives a subfactor $\mathcal{N}_{un} \subset \mathcal{N}$ and a projection $f \in B(L^2(\mathcal{N}))$ commuting with \mathcal{N}_{un} such that \mathcal{M} is generated by \mathcal{N} and f.

Outlook

- Can we prove S1Bness for the other quantum automorphism group function algebras?
- Can we determine $\delta_0(v)$ for U_N^+ ?
- What else can we push through these embeddings?
 - Certainly Connes Embeddability and RFDness
 - What about inner linearity for instance?
- What about properties for the linking algebra lurking in the background? (relation to quantum information theory)

UiO Department of Mathematics University of Oslo

Strongly 1-Bounded Quantum Group von Neumann Algebras

